The Rosetta microSDHC card is an industry-standard secure digital high capacity (microSDHC) form factor available in two security configurations: 1) The Rosetta microSDHC PKI configuration is a public key infrastructure (PKI) device with clear flash. 2) The TrustedFlash™ configuration enables hardware AES-256 encryption to provide the strongest commercially available data protection and PKI capabilities to use with public key enabled applications.

Rosetta microSDHC PKI HSM

While PKI smart cards or similar NFC enabled tokens can increase the security of customer applications through the use of multi-factor authentication, encryption, and message signing, using them always requires a special reader or USB port. The Rosetta microSDHC PKI is a smart card contained in a microSDHC package.

The FIPS 140-2 Level 3 certified SPYRUS Cryptographic Operating System (SPYCOS®) used in the Rosetta microSDHC is the same as that used in Rosetta Smart Card, Rosetta USB, the PocketVault P-3X USB 3.0 encrypting storage drives, and the family of Microsoft certified Windows To Go live drives. SPYCOS executes within an EAL5+ tamper resistant security controller contained within the body of the Rosetta microSDHC.

The Rosetta microSDHC is a hardware security module designed for use with public key enabled applications like encrypted email, digital signatures, VPN authentication, and Web authentication.

SPYRUS TrustedFlash™ microSDHC

The TrustedFlash microSDHC adds AES-256 hardware encrypted flash memory to the Rosetta microSDHC PKI capabilities. It is designed from the ground up to bring high-assurance information protection to mobile devices through the use of advanced cryptography.

The Rosetta SPYCOS crypto core protects against active and passive attacks by using an active shield and randomized memory layout to prevent physical tampering. It also includes countermeasures against side-channel attacks.

Hardware-based cryptographic support makes the TrustedFlash in the Rosetta microSDHC invulnerable to many attacks that have compromised software-based cryptography on PCs, tablets and mobile devices.

The TrustedFlash provides on-the-fly encryption of the flash memory designed to protect sensitive personal or corporate data and Personally Identifiable Information (PII) in a hardware protected vault. Access to the Trusted Flash can be obtained by inserting the Rosetta micro SDHC card into the microSD or SD port available in most laptops and tablets. The microSDHC form factor is an extremely convenient way to protect data at rest without using the limited USB ports. Access to the encrypted TrustedFlash hardware vault is only made available after a user has successfully logged into the Rosetta microSDHC. The device key is zeroized if the maximum number of bad logon attempts is exceeded. The number of bad attempts can be set by policy. Zeroizing the device key is much more secure and rapid than zeroizing the entire flash memory content.

The Rosetta microSDHC PKI and TrustedFlash configurations will also work with the optional NcryptNshare applications that provide data protection on a file-by-file basis. The combination of NcryptNshare with the SPYRUS TrustedFlash card provides the ultimate defense in depth data security solution for Windows environments.
Technical Specifications

Functionality
PKI-based key and digital certificate functionality such as encrypted/signed email, digital signatures, authenticated VPN & Web browsing
TrustedFlash™ AES 256-bit hardware self-encrypting configuration option providing flash memory protection with PKI services
Key zeroization when bad Password attempts has been exceeded
FIPS 140-2 Level 3 high-assurance protection for keys, digital IDs, and sensitive data
Unique serial number for each device
Approximately 32K of EEPROM available within security controller for X.509 certificates
Compatible with support for Windows 7, 8, 8.1, 10 and Linux and more on request
Operates with optional NcryptNshare applications

SPYCOS® Features
FIPS 140-2 Level 3 Certified & Algorithm Agility

Memory Capacities
4, 8, 16 GB
Higher capacities will be supported in Q2 2016

Electrical
Operating voltage: Vcc = 3.3 to 5VDC
Power consumption: ~30mA @ 3.3VDC

Environmental
Operating temperature: –15° C to 55° C
Storage temperature: –20° C to 65° C

Packaging
micro SDHC form factor

Standards and Security
SDIO Specification Version 1.10
SD Physical Layer Specification Version 2.0
FIPS PUB 46-3 Data Encryption Standard
FIPS PUB 180-2 Secure Hash Algorithm Standard
FIPS PUB 186-4 Digital Signature Standard
FIPS PUB 197 Advanced Encryption Standard
FIPS PUB 198-1 Keyed Hash Message Authentication Code (HMAC)
SP 800-38A Block Modes of Operation
SP 800-56A Key Establishment Schemes
SP800-90A. Rev.1 Deterministic Random Bit Generator
FIPS 140-2 Level 3 / CC EAL 5+ validated crypto core
Military grade cryptography (a set of cryptographic algorithms published by the U.S. Government as part of its cryptographic modernization program to serve as an interoperable cryptographic based for both unclassified information and most classified information)
Elliptic Curve Cryptography (P-256, P-384, P-521)
ECDSA Digital Signature Algorithm
Key Agreement / Establishment: CVL (ECC CDH), KAS, KTS
RSA 2048 digital signature algorithm
AES 128/192/256 with ECB, CBC, CTR
SHA-1, SHA-224/256/384/512 Secure Hash Algorithms
Other FIPS- approved algorithms:
HMAC (min 112 bit key) keyed hash MAC
SP800-90A HASH_DRBG (RNG)
TDES-3, ECB, CBC

For more information about SPYRUS products, visit www.spyrus.com or contact us by email or phone.